daq Working Group A. D’Ambrosio
Tech. Note: 01 Rev. 0 S. d’Angelo
March 1998

Supersedes:

Superseded by:

GNOsys
The data acquisition system for the G. N. Observatory

Status of this memo:

This document is intended for a general audience; it describes the guide-
line followed in to design the GNQO’s data acquisition system and it enters
in some details of the actual implementation. In this it reflects the status
as at the end of January 1998.

Universita degli studi di Roma “Tor Vergata”
Dipartimento di Fisica

rom2f/98/07 (feb.98)

GNO TN-01(0) 2

Contents:

general description oL L 3
hardware 5
assembling and cabling o Lo 6
devices configuring oL Lo 7
Achille’sheel 0 o000 oo 8
softwareo 8
system softwareo Lo oo 8
system software additions00 0000 9
system software customizations 9

dag software 10
the shared memory oL 10

the read and write daemons 13

the user controlo oo 14
hardware dependencieso 15

runs, data and all that 0000 15

testing L 16

GNO TN-01(0) 3

general description

The main goal is to provide the G. N. Observatory with a data acquisi-
tion/distribution system that is speedy, reliable and highly available. In
addition the system should stay updated for years and the upgrades should
be backward compatibles as much as possible.

To guarantee reliability and forward compatibility we adopt an extremely
modular design, based on well established standards. To assure availability
we duplicate every critical component.

The whole system is, logically, made of three parts: an on-line subsystem
that directly dialogues with the electronics, controls the instruments and
store data on disks; an off-line subsystem that performs some homekeeping
and distributes data to remote clients; a mass storage subsystem on which
all data resides. The fig. 1 shows the schema of the planned hardware.

data
storage Q
and | -
nfs link [distribution _(IzoocaGIg)l/stlé)]
“gnoC”
data MSS data
acquisition (2 x 20 GByte) acquisition
GPIB adapter computer computer GPIB adapter
PCI| “gnoA” [] [“gnoB” [PCI
bus repeater bus repeater
1 1 1
[GPIBbus| | [[| [| | [GPIBbus]
| S| | S|
bus repeater bus repeater
[VXibus [CAMAC bus GPIB
device
VXI controller CAMAC controller

Fig. 1 — Schema of the data acquisition system

One UNIX machine (gnoC), equiped with 20 GByte local disk, realizes the
off-line subsystem; the mass storage MSS offers 40 GByte and it is built with
twelve 4.3 Gbyte disks arranged in two RAID-V sets. It is locally mounted
in the on-line and it is remotely mounted (via nfs) in the off-line.

The on-line system is composed of two identical UNIX boxes (gnoA and gnoB)
that share the Wide-SCST bus on which the disks reside. Each machine

GNO TN-01(0) 4

control the same IEEE 488.2 bus through a PCI/GPIB adapter. A pair of
repeaters, linked by an optical fibre cable, is used to extend the bus to more
than 15 meters (up to 1 Km) and to electrically insulate the second trunk. It
also increases the number of GPIB addresses from 16 to 32. Two addresses
being reserved to the adapters on the gnoA and gnoB machines; the bus can
host up to 30 IEEE 488/488.2 compliant devices. Even if there aren’t GPIB
adapters for VXI or CAMAC buses, single VXI or CAMAC crates can be
driven using GPIB/VXI and GPIB/CAMAC crate controllers.

The components of the on-line software and their relationship with the oper-
ating system and with the electronics are schematically shown in fig. 2. A de-
vice driver is installed into the OS kernel communicates with the PCI/GPIB
adapter allowing the daq daemon (daqd) to exchange messages (commands

and data) with the GPIB bus.

RT Unix
local —t ger device
ocal daemon e b | hiw
control river
and
monitor
UDV/ shared memory:
run parameters
remote event buffer
monitor
|| and
control
write mass
daemon storage

Fig. 2 — Schema of the software components

The dagd reads commands from and stores data into a non volatile shared
data area (sda) that is in common with the write daemon (daqwrt) and
with the local controll process (dagctl). While daqwrt performs an unique
task: to flush on disk all available data at every signal received from daqd;
the tasks of the local control are: i) to issue signals for to start/stop both
the demons; ii) to fill the sda with the actual values of the parameters (run
number, run type, ...) to be used in the run; iii) to send relevant information
about the status of the system to the remote control process. This only is
in charge of the man-computer dialogue: presentation of the information on
screen and interpretation of key-strokes for to steer the local control.

GNO TN-01(0)

hardware

Table 1 lists the quantities needed (Qty) and presently available (Avl) for

any relevant component of the system.

Table 1 — Part list

Qty | Avl | Description

1 0 | a-server 2100 (D:)
includes PCI/SCSI adapter (D:)
includes Ethernet 1/F (D:)

1 1 + 128 Mbyte memory expansion

1 0 + PCI/SCSI adapter (D:KZPSC-BA)

1 1 | powered cabinet (D:H9A10 metric)

2 1 | a-server 1000 (D:ASR1000A 5/400)
includes PCI/SCST adapter (D:)
includes 2 Gbyte disk (D:)
includes Ethernet 1/F (D:)

2 1 + 128 Mbyte memory expansion

1 1 + DAT tape (D:TLZ90)

2 1 + PCI/SCSI adapter (D:KZPSA-BB)

2 1 + PCI/GPIB adapter (NIL:777260-01)

1 1 | controller shelf (D:BA350-MA)

2 1 | SCSI controller (D:HSZ50)

2 1 + 32 Mbyte cache memory

2 1 + cache memory backup battery

2 1 | 16-Bit SBB shelf (D:BA356-S)

2 1 | 16-Bit I/O module (D)

20 6 | 4.3 Gbyte disk Wide-SCSI (D:DS-RZ1CB-VW)

4 0 | GPIB extender (NI:GPIB-140)

4 0 | 50 mt optical fibre cable (NT:182805-010)

The term in parenthesis in the last column indicates the supplier (D: for
Digital, NI: for National Instruments) and the supplier’s item number.

At the time of this writing:

MSS — 20 Gbytes are assembled in the GALLEX laboratory in Rome. The
order for the rest was already placed by the Milano group.

gnoC — the machine is in the fil of the GALLEX building; the OS must be
changed to UNIX (presently is VMS); the disks must be upgraded

GNO TN-01(0) 6

and another SCSI controller must be added. No actions can be
taken while it is in use for the GALLEX data analisys.

gnoB — the order for this machine was already placed by the Milano group.
gnoA — the machine is assembled and is functioning in the GALLEX labo-

ratory in Rome.

assembling and cabling

Assembling and cabling gnoA is in some extension straightforward; most of
connections being via internal buses. In fig. 3 it is shown the front view of
the cabinet; the white rectangles indicate the position of the installed items,
the shadowed ones indicate the place-holders for the next devices to install.
Two and half units are still free for future expansions (if needed).

Fig. 3 — Front view of the cabinet

The expanded views (at left in fig. 3) show the position of modules inside the

GNO TN-01(0) 7

shelves, most of positions being obliged. Item (1) is the power supply and
must occupy the leftmost slot; item (2) is the cache memory battery backup,
it could be anywhere (and in fact — in this position — it steals the place of
the power supply backup). The HSZ50 in the upper position (3) assumes the
SCST address of 7 (the second one will be put, in the same shelf, in the lower
position at SCSI address of 6 and this will prevent the slot (8) from to be
used for a hot spare disk). Cable (4) comes from the KZPSA-BB controller
and the bus is (presently) ended by the terminator (5). The position in the
shelf of the six disks (9) fix their SCSI address (0 is the rightmost one, 5
the leftmost). Finally one cable connect the controller port 1 (6) with the
i/o-module (A).

devices configuring

The six disks — (9) in fig. 3 — are automatically configured and identified by
the HSZ50 controller as: DISK100 DISK150 from right to left (their ids
are needed to be known in case of manual replacement). A single RAIDSET

(RAID1) is made at the PTL of 100; this and the number of the SCSI bus
uniquely defines how the OS will name (rzb8) the device.

Table 2 — Device assignements on gnod

/dev/... | is on:
1n0 | eisa 0 ethernet i/f
rz0 | scsi 0 target 0 lun 0 | 2 Gbyte system disk
rz4 | scsi 0 target 4 lun 0 | cd-rom
tz5 | scsi 0 target 5 lun 0 | DAT tape
rzb8 | scsi 1 target 0 lun 1 | 20 Gbyte RAID-V disk
ib0 | pci 2 slot 3 PCI/GPIB adapter

Table 2 lists the assignements for each relevant device recognized on gnoA;
it may be convenient, even if not mandatory, to maintain same assignements
on the other machines.

Table 3 — Disk partitions

offset size | type cylinders
rz0a 0 262144 | 4.2BSD 0-63
rz0b | 262144 | 1048576 | swap 64 — 319
rzO0g | 1310720 | 7067648 | 4.2BSD | 320 — 2045

rzb8c 0| 41879900 | 4.2BSD | 0 - 18530

GNO TN-01(0) 8

As shown in Table 3, the system disk has been partioned in non standard way,
in order to increase the swap space and to regain space from the h-partition;
the raid disk is instead used as only one “big” partition.

Achille’s heel

The system looks very robust, however there are few weak points. As matter
of fact it can be blocked by:

— a failure in the UPS (to prevent this it would be necessary only a second
UPS; in fact redundant power distribution is already foreseen).

— the fault of two disks in the same shelf at same time (to prevent this it
would be necessary a third shelf and at least one more disk).

— the fault of one i/o-module (to prevent this it would be necessary to have
four more shelves with their i/o-modules).

(Va va sans dire that fault tolerant systems does not guard against accidental
deletion of files (in UNIX-like OS a deleted file cannot be rescued; it is simply
gone). This means that periodic backups are always needed.

Finally, even if there are two of each composant it is not a good habit to
replace a faulty module on a system with the working one in the other (often
this operation would damage the second one too); the right step is to swap
from one system to the other. Consequently the software on both machines
sould be the same at any time.

software

system software

From here all considerations refer to gnoA machine only. Presently it runs
Digital Unix (formerly known as OSF/1) operating system, version 4.0B
(Rev. 564). The kernel was build accepting only the following options:

— Sistem V support

— Kernel Brkpt

— Packet filter driver

- STREAMS

— X/Open transport

— IS0 9660 CDFS

— Audit.

GNO TN-01(0) 9

the resulting configuration file is: /sys/config/GNOA.

Some resource consuming products (eg. Netscape navigator) that come with
the base software was not explicitly removed but certainly will not be up-
graded and their use on this machine is strongly discouraged.

system software additions

In addition to the base system software, the following products have been
installed:

i) using the setld command (from the distribution media):

— dfab00 (Digital: Fortran 77 compiler. Vers 5.0.0)
— lps510 (Digital: laser printer server. Vers 5.1.0)
— swalla (Digital: remote consolle for HSZ50. Vers 1.1A)
- PCIGPIB (National Instruments: PCI/GPIB driver. Vers. 1.1)

ii) sourcing from ftp://cis.uniRoma2.it/unix/misc/dUnix bin

— /usr/local/bin/bash (the bash shell)
— /usr/local/bin/perl (the perl programme)
— /usr/local/bin/sedt (a screen editor, similar to EDT)
— /usr/local/bin/ncftp (a screen oriented ftp client)
— /usr/local/bin/gnuplot (the gnu (FSF) plotting programme)
— /usr/local/bin/kermit (the kermit data transfer programme)
— /usr/local/bin/xa2ps (a filter for to print text files)

)

— /usr/bin/X11/xperfmon+ (a system performance monitor

system software customizations

Few customizations have been made to the system software: some of these
should be reconfigured when moving the system at the Gran Sasso Labora-
tory.

— The second subfield of the gecos field of user records in the file /etc/passwd
has now the meaning of a three-letter nickname allowing the user to control
the start/stop of the runs.

— Two mount points, /d1 and /d2 have been created. The file /etc/fstab
has been modified for to mount the device /dev/rzb8c on /d1.

— The file /etc/syslog has been modified to allow the data acquisition task
to log messages.

GNO TN-01(0) 10

— The 1p queue should be re-defined to point to a convenient print server.

— The internet machine names (the domain name) and addresses should be
redefined as:

gnoA.lngs.infn.it 192.84.135.148
gnoB.lngs.infn.it 192.84.135.149
gnoC.lngs.infn.it 192.84.135.56

the machine gsnet0.lngs.infn.it (192.84.135.16) will be the primary
nameserver while cscgs0.1lngs.infn.it (192.84.135.7) will provide the
default gateway.

daq software

The directory tree structure of the data acquisition system is shown below:

/GNOsys/bin/ all executable programmes and scripts;
/GNOsys/1ib/ all object (.o) files and shareable libraries (. so);
/GNOsys/src/ all programme’s sources (.c);
/GNOsys/src/inc/ all include files (.h);
/GNOsys/var/ shared memory and other miscellaneous;
/GNOsys/var/logs/ log files from all processes;
/GNOsys/var/pids/ lock files (the programme’s pid;
/GNOsys/rawdata/ raw data (What e]se?);
/GNOsys/users/ wusers’ login area;

The root is physically mounted at /d1/ but is referenced only throughout
the symbolic link /GNO; while the users’ login area is referenced throughout
the symbolic link /GNOusr.

There are Makefile files in the directories /GNO/bin, /GNO/1ib and /GNO/src;
to recompile and to relink tasks it is sufficient to issue the command: make
from the /GNO/src directory.

the shared memory

The nucleus of the data acquisition is in the shared data area. It consists of
(2 + 8 x 8) memory pages (one page is 8 Kbyte); the first two contain the
relevant parameters for the current processes and the current run. Starting
on the third page (page two) there are eight blocks of eight pages each; these
blocks are linked to form a circular list of event buffers. The details of the
structure are shown in the fragment of code in table 4, adapted from the
comments in the include file: inc/daqconf.h.

GNO TN-01(0)

/*
/*
/*
/*

/*
/*

/*
/*

/*
/*

/*
/*

/*
/*

Table 4 — Shared data area structure

SDA.

creation time
creator
privileged ctl pid
active daemon pid
active writer pid

RUN.

run number [totall
run type

run number [typel
current run start oper

current run start time

mask of required devices
line definitions

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/

*/
*/

/* input is connected ? (T/F)

/* counter number

/* type

/* gas

/* pressure

/* copper box

/* lead shield

/* pos. in tank

/* HV (helipot)

/* HV

/* main amplifier
/* shape amplifier

/* description

current run end oper
current run end time

write data on disk
output filename

placeholders for next run
editable parameters

*/
*/

*/
*/

*/
*/

<- process parameters

<- run parameters

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

(a)
(b)
(c)

(d)

(e)
(f)

GNO TN-01(0) 12
/* ditto x/
/* ditto x/
/* "official" trigger time */
/* "official" trigger number */
/* 2nd last event time [total] */
/* last event time [total]l =/
/* event number [1ine] */
/* 2nd last event time [line] */
/* last event time [1ine] */
/* number of "red" buffers */
/* number of "green" buffers */
/* "purple" buffer (in use) */
/* ptr to next "red" buffer */
/* ptr to next "green" buffer */
/* BUFO ¥/ <- buf 0 <<---+
/* next buffer address ¥/ >d-——-—————- + |
/* size of event data x/ (. (9)
/* event number */ (.
/* event time stamp */ [
/* raw data begins here: "D1" %/ (.
/* byte count for device 1 */ |
/* NEq" * I
byte count for eqpmt 1 * (.
o * |
eqpmt 1 data * |
"E2" * (.
byte count for eqpmt 2 * (.
* (.
.o * []
"pa" * (.
*/ (. (h)
(.
/* BUF1 x/ <= buf 1 <<-+ |
/* next buffer address */ >d-———---——- + |
/* size of event data */ | (g)
/* event number x/ (-

GNO TN-01(0) 13

/* event time stamp */ |
/* raw data begins here: "D1" */ |]
/* byte count for device 1 */ v o
/* "E1" * 2 |
byte count for eqpmt 1 * |
e * |
eqpmt 1 data * |
"E2" * |
byte count for eqpmt 2 * |
* |
C * I
"p2" * |
*/ |
|
| (h)
(.
/* BUF7 x/ <= buf 7 <<-+ |
/* next buffer address ¥/ O>d--m—mmmmm————- +
/* size of event data */ (g9)
/* event number */
/* event time stamp */
/* raw data begins here: "D1" %/
/* byte count for device 1 */
/% NELY *
byte count for eqpmt 1 *
ce. *
egpmt 1 data *
"E2" *
byte count for eqpmt 2 *
*
C *
Dot *
*/ (h)

the read and write daemons

/GNO/bin/daqd and /GNO/bin/daqwrt form a producer-consumer pair. The
first fills an event buffer reading data from the GPIB bus; the second emp-
ties the buffer writing data on disk. In order to be sure that they operate
with the correct run parameters (sourced from the shared memory) both

GNO TN-01(0) 14

programmes must be launched by the control task and are prevented from
being launched directly by the user. To avoid conflicts on the bus, a lock-file
forbids the running of two copies of these programmes (but a conscious user
can circumvent this lock).

The principle of operations is trivial. When daqd is started, it initializes the
hardware calling in turn the routines: dvc01 _start, dvc02_start, ..., then it
spawns daqwrt and begin to wait. As daqwrt starts, it initializes the output
file and the goes to sleep.

When a SIGINT signal — as consequence of a SRQ on the bus — is dis-
patched to daqgd it acquires the next free buffer and fills it calling in turn:
dvc01l read, dvc02 read, ..., then issues a SIGURG signal. In response to
this daqurt awakes and starts to empty all filled buffers it can find; when no
more filled buffers exist daqurt goes back to sleep.

The cycle repeats untill a SIGTERM signal is recognized by daqd. Then it
calls in turn the routines dvc01_end, dvc02_end, ..., and forwards the same
signal to daqwrt that flushes the residual buffers and close the output file.

the user control

In the present version the two functions, remote and local control, shown
in fig. 2 are accomplished by an unique, local, task. Consequently the user
must telnet to gnoA and invoke: /GNO/bin/daqctl.

To master the variety of terminals, this programme relies only on the proper
setting on the number of rows (minimum 24) and columns (minimum 80) and
on the capability of addressing the cursor; practically any real or emulated
terminal can be used. Graphics can be coarsely shown on the screen of
alphanumeric terminals (using a VT100 emulator with 132 coluns and 58
rows it is not so bad); with more accuracy and better look on Tektronix
40xx or 41xx terminal or emulators; on REGIS terminals (e.g Digital VT230,
VT330, VT430) and on any X11 terminal.

To avoid assumptions about the terminal used, the user interface appear like
a hierarchical menu tree, driven by keystrokes (usually up and down arrows
and enter keys). Instead, for to keep it simple, the implementation is realized
with a flat bundle of coroutines and the depth of the menu routine calling is
never greater than two.

Obviously many copies of daqctl can be active at the same time to look
at the data acquisition progress; but only one copy at a time can controll

GNO TN-01(0) 15

(start / stop) the run. One by one, users can be allowed or prevented from
becoming the privileged one.

hardware dependencies

In the present version any modification to the hardware obliges to modify few
routines and to recompile and link the programme. Modules to be modified
are: /GNO/bin/devices.c and, may be, /GNO/bin/ctllib.c

For the nn-th device to be serviced in devices.c there should be three rou-
tines:

— dvcnn_start that sends the proper sequences of GPIB commands to ini-
tialize the device;

— dvcnn.read that: i) sends the sequence to start the data trasmission from
the device, ii) puts the received data in the right place in the event buffer,
iii) updates the pointer to the data buffer;

— dvcnn_end that sends the sequence to terminate the device.

In ctllib.c there are two routines dlg dumpData and dlg plotData that
depends on the actual meaning and format (word size, MSB first, ...) of the
data and therefore could have to be adapted.

runs, data and all that

Runs are classified in four types: fake, test, cali-bration and prod-uction
((b) in table 4) and are identified by a progressive run number ((a.) in
table 4) that is increased at each run, irrespective of the run type. For each
type the progressive number is recorded ((c) in table 4). By default fake
runs doesn’t write data on disk while the others will do; this default can be
overriden by the operator.

The raw data are written on disk in the directory /GNO/rawdata. The file
naming schema is: runxxxx.ttttzzzz where run is a fixed keyword; xxxx is
the four digit run number; tttt is the four letter run type and zzzz is the
four digit run number of this type.

Each file starts with a start-of-run block formed by:
— the number of bytes that will follow
~ four byte identification (SOR.)
— all bytes from (a) to (d) of table 4.

The start-of-run block is followed by zero or more event blocks formed by:

GNO TN-01(0) 16

— the number of bytes that will follow
— four byte identification (EVT.)
— all bytes from (g) to (k) of table 4.

Last block is the end-of-run block formed by:
— the number of bytes that will follow
— four byte identification (EOR.)
— all bytes from (e) to (f) of table 4.

testing

The system 1s exercised using the simple apparatus shown in fig. 4. A pulse
from the pulse generator (PQ) is sent to a discriminator (DSC) and (via an
80 ns delay) to a transient recorder (TD). The output of the discriminator:
is counted on the scaler (SCAT1), starts a 200us gate generator (GG) and is
feed to the coincidence.

\
o
_ F
BUSY, ==

—O
FO—/ TRIG

<+ BUSY

INTERRUPT

€
G
G
HO

{o DLY ol] SIGNAL o

Fig. 4 — Schema of the test equipment

The output of the coincidence: (DSC) - (GG) - (BUSY) is counted on the
scaler (SCA2); triggers the (TD); and is sent to a CAMAC dataway display
(DWD) to produce a LAM; in respose, the crate controller (CC) produces a
SRQ on the GPIB bus and this will send the SIGINT signal to daqd. The
very first reaction is to turn-on the output register (OR) for to assert the

BUSY line.
With reference to fig. 5, the dead time is given by

the sum of the reaction time and the service time. —INTERRUPT
The measured reaction time is £, = 130us; while the :I:_L FSY
service time ranges from a minimum of ¢t;, = 1.1 ms ~ |

(only clear the LAM, read the scalers, turn-off the i i

output regquter)‘to a maximum of {; = 3 s (due to Fig. 5 — Timing
the conversion time of the TD).

